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Hearthstone – an Online Card Game

• Hearthstone is an online collectible card game

• 2 players play a single game using a self-constructed 
deck of 30 out of more than 1000 cards

• Next to a small amount of standard-cards most 
cards have unique effects and 
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Hearthstone – Game Components and States
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Why we cannot use MCTS effectively?

• Monte Carlo Tree search needs a Forward Model for executing many 
simulations starting from the current state

– We now the rules of the game, so the Forward Model is available

– But we do not know the current state of the system!

• The player does not know the real state of the game, which consists of

– The board state

– The own and the opponent‘s cards

– The cards in both decks

– All previously played cards
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Sources of Uncertainty

• Specifically the player does not know:

– Which specific cards he will draw in the future

– Which cards the opponent has on his hand or in the deck

• We need to adapt Monte Carlo Tree Search as long as we do not know 
the current game state.
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MCTS for an Unknown Card Distribution

• If the real gamestate is unknown we can 
still guess multiple times:

– information about the opponent‘s 
hero and cards that were already 
played restrict the open card pool

• Use and ensemble of MCTS agents with 
majority vote

• This does not suffice in Hearthstone!

– Too many possible card distributions

Dockhorn, A., Doell, C., Hewelt, M., & Kruse, R. (2017). A decision heuristic for Monte Carlo tree search doppelkopf 
agents. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1–8). IEEE. 
http://doi.org/10.1109/SSCI.2017.8285181

Method used for Doppelkopf
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Deckbuilding

• By common knowledge popular decks often employ critical 
properties such as:

– A stable mana curve

– Strong synergies

– A strategy to reach the win-condition

• Most decks can be categorized in deck types, which are common to 
the meta-game

– Those decks often consist of similar cards, but do not 
necessarily contain the same 30 cards
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Mana Curves

• The players can play their cards using mana

• Each turn the pool of available mana increases by one

• The mana curve of a deck describes how much cards per cost are included 
in the deck
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Card Synergies
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Meta-Decks
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Finding Probable Card-Combinations

• Meta-decks and card synergies tell us that we have strong 
dependencies between cards in a deck

• We want to predict likely cards by observing frequent card-
combinations in a database of played games

• Counting bi-grams of co-occuring cards:

– isolated: cards need to be played at the same turn 

– successive: cards need to be played in successive turns

– combined: isolated and successive counts are added

Alexander Dockhorn Slide 15/21, 15.06.2018



Adapting MCTS Gamestate Sampling

• A set of hand-cards is determined using the bi-gram database and all 
previously seen cards

1. determine the number of co-occurences of each card

2. filter possible cards by the rules of the deckbuilding process

3. sample the opponent‘s hand cards based on the normalized co-
occurence values

• Generate multiple set of opponent‘s hand cards and run MCTS on 
each of them

• Use (weighted) majority vote to determine the best card to be played
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The overall Process

Alexander Dockhorn Slide 17/21, 15.06.2018



Evaluation

• We tested our agent against multiple other agents playing multiple decks

– Random = randomly choose the next action

– flatMC = flat Monte Carlo algorithm, simulate n times for each action

– plainMCTS = MCTS using a randomly guessed game states

– foMCTS = MCTS using the true game state (cheating)

– Exh.s. = exhaustive search for best action, does not consider the opponent
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Conclusions

• Applying MCTS to Hearthstone is very limited due to missing information

– Guessing a gamestate lets us apply MCTS with weak play strength

• Combining multiple of such guesses by creating an ensemble of MCTS helps 
but does not solve the problem efficient enough

• In this work we proposed a card-prediction to enhance the accuracy of 
sampling possible card distributions

– An ensemble using such predicted gamestates is nearly as powerful as 
knowing the real gamestate
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Limitations and Open Research Questions

• Our tests using an MCTS agent with full information on the current game-
state show that a perfect prediction would yield slightly better results

– Further improving the prediction accuracy promises to yield a 
stronger agent

➢ Explore the tradeoff between a complex prediction or more 
simulations/predicted card sets

➢ Can fuzzy sets and dempster-shafer theory help us to solve this problem 
more efficiently?

• We want to further explore meta-decks

– How do they develop over time?

– Can we detect changes in the meta and react accordingly?

➢ Important for deck-building and balancing!
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Thank you for your attention!

Interested in trying it yourself? Check out our Hearthstone Competition at: 
http://www.is.ovgu.de/Research/HearthstoneAI.html
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